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Abstract. In this study, using the base of coherent states, Landau diamagnetism has been generalized
within Tsallis Thermostatistics. As far as we know, this is the first attempt to introduce coherent states in
this formalism. The magnetization and the susceptibility of the system have been obtained and compared
with the standard result to illustrate the effect of nonextensivity. Then, adding a perturbation term to
the Hamiltonian of the system, nonextensive effects on diamagnetic susceptibility have been investigated.
In addition to this, making use of the qG-deformed partition function of the qG-oscillator system, the
magnetization for qG-deformed Landau diamagnetism has been derived, with the aim of comparing the
results obtained within both formalisms.

PACS. 05.20.-y Statistical mechanics – 75.20.-g diamagnetism – 03.65.-w quantum mechanics

1 Introduction

Although since long it is well-known that extensive
Boltzmann-Gibbs statistics fails to study the physical sys-
tems where (i) long-range microscopic interactions (ii)
long-range memory effects are present and (iii) the sys-
tem evolves in a multifractal space-time, a tendency to-
wards the nonextensive formalisms keeps growing nowa-
days. One of these formalisms is the quantum groups (QG)
[1] whereas the other is the so-called Tsallis Thermostatis-
tics (TT) [2]. Before summarizing TT, it is worthwhile
to note that although these two formalisms seem to be
very distinct, some recent developments [3] indicate that
there is a connection between them. Hence, further de-
velopments on this line by studying systems within both
formalisms would be expected.

In order to summarize the TT, let us recall the axioms
on which the formalism is based.

• The entropy of the system is defined to be

Sq = −k
1−

∑W
i=1 p

q
i

1− q
(q ∈ <)

where k is a positive constant, pi is the probability of
the system in a microstate, W is the total number of
configurations and q is a new parameter which is often
called the entropic index and it is associated with the
nonextensivity of the system (it must be noted that,
in general, this q and the other q appearing in QG are
not identical, therefore in order to distinguish these
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two q’s we’ll use a subscript G for the q index of QG).
Note that this entropy is nonextensive and recovers the
well-known Shannon entropy S1 = −kB

∑
i pi log pi if

and only if q = 1.
• q-expectation value of an observable O is given by

〈O〉q =
W∑
i=1

pqiOi

which again recovers the conventional expectation
value for q = 1.

Besides these simple axioms, the formalism also has some
important properties such as existence of partition func-
tion, preservation of Legendre-structure of thermodynam-
ics, stability, q-invariant Ehrenfest theorem, etc., which
makes it possible to study the physical systems within this
formalism. The details of the properties can be found else-
where [4]. It is seen that from the year 1988 up to present
days the TT not only has been applied to various con-
cepts of thermostatistics [5–22], but also achieved to solve
some physical systems where Boltzmann-Gibbs statistics
is known to fail. Amongst them, stellar polytropes [23],
Levy-like anomalous diffusions [24], two-dimensional Euler
turbulence [25], solar neutrino problem [26] and velocity
distributions of galaxy clusters [27] could be enumerated.

In this manuscript, our motivation is to introduce the
coherent states (CS) within TT, since, as far as we know,
there has been no attempt on this line yet. To do this,
we generalize the Landau diamagnetism by using the base
of CS, which has exhibited the property that it makes
the calculations very easy compared to the other bases.
In addition to this, the effect of nonextensivity has been il-
lustrated with the magnetization curve. In the last part of
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this paper, the same subject (i.e. Landau diamagnetism)
has been attempted to be considered within QG, with
the aim of establishing relations between TT and QG by
studying Landau diamagnetism in the frame of both for-
malisms.

2 Coherent states of an electron in a uniform
magnetic field

The Hamiltonian of a free electron in a magnetic field H,
neglecting spin, is given by [28]

H =
π2

2m
(1)

where m is the electron mass and

π = p +
e

c
A (2)

H =∇ ∧A. (3)

We choose the vector potential to be

A =

(
−

1

2
Hy,

1

2
Hx, 0

)
(4)

so that H = Hk. Thus, the Hamiltonian of a free electron
is written down as

H =
1

2m

[(
px −

1

2
mωy

)2

+

(
py +

1

2
mωx

)2
]

(5)

where ω = eH/mc is the electron cyclotron frequency.
Introducing the operators

π± = px ± ipy ±
(
i~/2`2

)
(x± iy) (6)

where ` = (~/mω)
1
2 is the classical radius of the ground-

state Landau orbit and noting that they obey the commu-
tation relation

[π−, π+] = 2m~ω (7)

it is easy to obtain

H =
(π+π−

2m

)
+

1

2
~ω. (8)

Let the coherent state |α, ξ〉 of this system to be de-
fined by the simultaneous eigenstate of the two commut-
ing non-Hermitian operators which annihilate the ground
state [28]:

π− |α, ξ〉 =
~
i

α

`2
|α, ξ〉 , X+ |α, ξ〉 = ξ |α, ξ〉 (9)

where α and ξ are complex numbers which have dimen-
sions of lenght and X+ =

(
x− πy

mω

)
+ i

(
y + πx

mω

)
with

[H,X±] = 0 , X− = X†+. The coherent state |α, ξ〉 has the
following normalization condition:

〈α, ξ|α, ξ〉 = 1. (10)

Moreover, CS form a complete basis and the closure rela-
tion can be expressed as

1

4π2`4

∫
|α, ξ〉 〈α, ξ| d2αd2ξ = 1 (11)

where d2α = dα1dα2, d2ξ = dξ1dξ2. Similar to the har-
monic oscillator case, these CS have also minimum uncer-
tainty, namely,

∆x∆px = ∆y∆py =
~
2
· (12)

3 Generalization of the Landau diamagnetism
and diamagnetic susceptibility

CS permit us to use the classical concepts for describ-
ing electron orbits, but yet contain all quantum effects.
This approach is used to calculate the generalized parti-
tion function and the generalized Landau diamagnetism is
evaluated out of it. It is also worth noting that, compared
to the other bases, the use of the base of CS has been
found to be quite tractable for the calculations.

In the frame of TT, the generalized partition function
is given by

Zq = Tr
{

[1− (1− q)βH]
1

1−q

}
(13)

where β = 1/kT . In the base of CS, in order to evaluate
Zq for a cylindrical body of length L, radius R, oriented
along the magnetic field, we can separate the partition
function into two parts [28]:

Zq = Z‖Z⊥ (14)

where Z‖ is the partition function which is parallel to the
cylinder and Z⊥ is the transverse part. Here, it is worth
noting that the factorization used above is an approximate
scheme which has been used first in [8] and shown to be
useful in [17,19]. Z‖ and Z⊥ are defined as

Z‖ =

(
L

h

)(
2πm

β

) 1
2

, (15)

Z⊥ =

∫
d2ξd2α

4π2`4
〈α, ξ|

[
1−

β

2m
(1− q) π+π−

] 1
1−q

|α, ξ〉 .

(16)

The transverse part, equation (16), can be simplified

through the properties of CS. [...]
1

1−q term at the right
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hand side of equation (16) can be expanded as[
1−

β

2m
(1− q)π+π−

] 1
1−q

=

1−
β

2m
π+π− +

1

2!

(
β

2m
π+π−

)2

q

−
1

3!

(
β

2m
π+π−

)3

q (2q − 1) + · · ·

=
∞∑
n=0

{
[1− ~ωβ (1− q)]

1
1−q − 1

}n
(2m~ω)

n
n!

πn+π
n
− . (17)

By substituting equation (17) in equation (16), using
equation (9) one can easily obtain

Z⊥ =∫
d2ξd2α

4π2`4

∞∑
n=0

{
[1− ~ωβ (1− q)]

1
1−q − 1

}n
(2m~ω)

n
n!

(
~2 |α|2

`4

)n

=
1

4π2`4

∫
exp

{
−
|α|2

2`2

[
1− (~ωβ (1− q))

1
1−q

]}
d2ξd2α.

(18)

In order to calculate the integral of equation (18) over
α and ξ, let us exclude all CS with |α+ ξ| > R, i.e.,
we sum over all orbits lying within the cylinder. If R �
`, the exponential term rapidly converges with |α|2 [28].
Therefore we can safely expand the integration over α to
all complex plane. More precisely, one can write down

Z⊥ =
1

4π2`4

∫ R

0

2π |ξ|d |ξ| ×∫ ∞
0

2π |α|d |α| exp

{
−
|α|2

2`2

[
1− (1− ~ωβ(1− q))

1
1−q

]}

=
(R/`)

2

1− [1− ~ωβ(1− q)]
1

1−q

· (19)

Substituting equation (19) in equation (14), the general-
ized partition function of a free electron gas in a uniform
magnetic field can be obtained as

Zq = V
(2πm/β)

1/2

h

mω

4π~
1

1− [1− ~ωβ(1− q)]
1

1−q

· (20)

Adding the zero-point energy, it is straightforward to write
down the generalized free energy

Fq =
n~ω

2
−
n

β

Z1−q
q − 1

1− q
(21)

and the generalized magnetization

Mq = −
∂Fq

∂H

=
ne~
mc

[
−

1

2
+ Z1−q

q

(
kT

~ω
−

1

X
(1−X)

q

)]
(22)

x
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Fig. 1. The magnetization versus dimensionless variable x for
various values of q.

whereX = 1−[1− (1− q)~βω]
1

1−q . It is easy to verify that
in the q → 1 limit, equation (22) leads to the standard
magnetization [28]

M1 =
ne~
mc

(
kBT

~ω
−

1

2
coth

~ω
2kBT

)
· (23)

The generalized susceptibility per electron, χq , in the
high temperature limit can be obtained as

χq = −
1

n

∂Mq

∂H
=
(
3q3 + 2q2 − 4q

)
χ1 (24)

where

χ1 = −
1

3

(
e~

2mc

)2
1

kBT
(25)

which is nothing but the standard diamagnetic suscepti-
bility.

As a consequence of equation (24), there exist a special
q∗ = 0.87 value, below which the generalized susceptibil-
ity vanishes. This special q∗ value exhibits an interesting
analogy with the value q∗ = 0.85, which has been found
by Cannas and Tsallis [29], for a completely different mag-
netic system (Ising ferromagnet).

In Figure 1, the generalized magnetization versus di-
mensionless variable x ≡ ~ω/kT , for various values of
q, has been illustrated. The figure indicates clearly that
a small deviation in extensivity (namely, the system be-
comes slightly nonextensive) causes the magnetization to
change considerably. This fact is exactly the same as what
appeared in some other systems [18,19,22] which have
been investigated within TT. It is seen that the magne-
tization goes to zero for a high but finite temperature.
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This unconventional situation could be considered as that
the system, in some sense, exhibits a kind of phase tran-
sition, due to the effect of nonextensivity. More precisely,
the system is diamagnetic up to zero x value, then it some-
how becomes paramagnetic (since the values of magneti-
zation become positive).

4 The effect of a harmonic potential on the
generalized diamagnetic susceptibility

Let us now consider the case where the system is per-
turbed by an external force. Thus, a harmonic potential
term with ω0 frequency is added to the Hamiltonian (8),
which gives

H =
1

2

[
π+π−

2m

(
1 +

ω

ω′

)
+

1

2
mω′

2

X−X+

(
1−

ω

ω′

)
+ ~ω′

]
(26)

where ω′ =
(
ω2 + 4ω2

0

)1/2
. Note that in the definitions of

`, X± and π±, ω is replaced by ω′.
By taking into account only the transverse part of the

partition function, the generalized partition function is
given by

Zq =

∫
d2ξd2α

4π2`4

〈
α, ξ

∣∣∣[1− (1− q)βH]
1

1−q

∣∣∣α, ξ〉 . (27)

To calculate the integral in equation (27), [...]
1

1−q term
can be factorized into two terms in the sense of the fac-
torization scheme recently defined and used in similar cal-
culations [19,17,8]. At this point, it is also worthwhile to
emphasize that since CS have a minimum uncertainty, in
this base 〈AB〉 = 〈A〉 〈B〉, which yields the calculations to
become tractable compared to other bases. Hence, equa-
tion (27) turns out to be

Zq =

∫ 〈
α, ξ

∣∣∣∣∣
[
1−

β

4m

(
1 +

ω

ω′

)
(1− q)π+π−

] 1
1−q

∣∣∣∣∣α, ξ
〉

×

〈
α, ξ

∣∣∣∣∣∣
[

1−
βmω′

2

4

(
1−

ω

ω′

)
(1− q)X−X+

] 1
1−q

∣∣∣∣∣∣α, ξ
〉

×
d2ξd2α

4π2`4
=

∫ ∞
0

∫ ∞
0

exp

{
−
|α|2

2`2

[
1−

(
1

−
~β
2

(ω′ + ω)(1− q)

) 1
1−q
]}

× exp

{
−
|ξ|2

2`2

[
1−

(
1−

~β
2

(ω′ − ω)(1− q)

) 1
1−q

]}

×
2π|ξ|d|ξ|2π|α|d|α|

4π2`4
· (28)

By taking into consideration ~ω′/2 term in equation
(26), one can finally find

Zq =

[
1−

~ω′β
2

(1− q)

] 1
1−q

×

{[
1−

(
1−

~β
2

(ω′ + ω)(1− q)

) 1
1−q

]

×

[
1−

(
1−

~β
2

(ω′ − ω)(1− q)

) 1
1−q

]}−1

. (29)

Note that the standard result

Z1 =

[
4 sinh

~(ω′ − ω)β

4
sinh

~(ω′ + ω)β

4

]−1

(30)

can be obtained in the q → 1 limit.
For ω0 � ω, the generalized susceptibility reads

χq =
(
3q3 + 2q2 − 4q

)
(2ω0)

q−1
χ1. (31)

From this expression, it is observed that in the q → 1
limit there is no contribution to the susceptibility from the
oscillator term, whereas for q 6= 1 case there is a contri-
bution to the susceptibility in the order of (2ω0)

q−1
. It is

interesting to see that the nonextensive effects change the
contribution of the perturbation term to the diamagnetic
susceptibility.

5 qG-deformed Landau diamagnetism

Parallel to the rapid increase of the interest towards quan-
tum groups recently, the investigations on the deformation
of the quantum harmonic oscillator systems (bosonic and
fermionic) have also been progressing fairly well [1]. Al-
though the qG-deformed algebra has been throughly in-
vestigated in the referred articles, it is instructive to give
here a brief review.

qG-bosonic oscillator algebra is defined by the commu-
tation relations

aa+ − qGa+a = q−NG , [N, a] = −a,
[
N, a+

]
= a+ (32)

where qG is the deformation parameter, a, a+ and N are
the annihilation, creation and number operators, respec-
tively. Eigenstates |n〉 of the number operator N are rep-
resented in the qG-Fock space as

|n〉 =
(a+)

n√
[n]!
|0〉 , (n = 0, 1, 2, · · · ) (33)

where [n]! ≡ [n] [n− 1] · · · [1], [0]! = 1 and [n] is given by

[n] =
qnG − q

−n
G

qG − q
−1
G

· (34)
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It could be noticed that this equality is invariant under
qG ↔ 1/qG.

In the qG-Fock space, it is known that the following
relations hold:

a+a = [N] , aa+ = [N + 1] . (35)

Lastly, it is emphasized that the actions of a, a+ and N
on |n〉 are given by

a |n〉 = [n]
1/2 |n− 1〉

a+ |n〉 = [n+ 1]1/2 |n+ 1〉 (36)

N |n〉 = n |n〉 .

The magnetization of an electron gas in weak magnetic
fields is made up (i) a paramagnetic part due to the spin
magnetic moments of the electrons and (ii) a diamagnetic
part due to the quantization of the orbital motion of the
electrons in the magnetic field (Landau diamagnetism).
The detailed investigations of the subject can be found in
the standard textbooks of Statistical Physics [30].

In order to express the qG-deformed Landau diamag-
netism, let us start by considering the qG-oscillator Hamil-
tonian

HqG =
P 2
qG

2m
+
mω2

2
X2
qG . (37)

By using equations (35, 36), this expression can be written
down as

HqG =
ω

2

(
a+a + aa+

)
=
ω

2
([N] + [N + 1]) (38)

where ~ = 1. This Hamiltonian is diagonal in the base |n〉
and its eigenvalues are

En (qG) =
ω

2
([n] + [n+ 1]− 1) (39)

where the zero point energy is translated to the origin of
the energies. In the qG → 1 limit, En (qG → 1) = ωn.
Then qG-deformed partition function of the oscillator is
defined to be [31]

(Zosc)qG =
∞∑
n=0

exp [−βEn (qG)] ,

β =
1

T
(kB = 1) . (40)

Now, let us consider a unit volume of the electron gas
in a homogenous magnetic field H which is oriented in the
direction of the z-axis. The qG-deformed partition function
for this system is

(Zel)qG =
mω

2π

(
2πβ

m

)1/2

(Zosc)qG (41)

where m is the electron mass and ω = eH/mc. Along the
lines of reference [28], the qG-deformed magnetization can

x
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Fig. 2. The magnetization versus dimensionless variable x for
various values of qG.

be found as

MqG = −
∂FqG
∂H

= −
e

mc
1

2
−

1

βω
−

1
2

∞∑
n=0

([n] + [n+ 1]− 1) e−βEn(qG)

∞∑
n=0

e−βEn(qG)

 · (42)

One could easily check that all the qG-deformed expres-
sions derived above transform to well-known standard re-
sults in the limit of qG → 1. The qG-deformed Landau
diamagnetism versus the dimensionless quantity x ≡ ω/T ,
for different qG values has been given in Figure 2. It is ob-
served that for low temperatures (i.e., for large x) the
curves of various qG values are the same, whereas for high
temperatures (i.e., for small x) plots start to deviate from
each other and for a certain very high temperature, unlike
the classical case, the magnetization tends to zero and for
temperatures higher than this value, similar to what has
been observed in Figure 1, the system exhibits a phase
transition-like feature, passing from diamagnetic case to
paramagnetic case. This tendency of the magnetization
curve is the same as the one obtained in Figure 1, indi-
cating the relation between two formalisms once again.
On the other hand, most interesting of all, magnetization
curves in Figure 2 are completely in good agreement with
the remarks of Tsallis in [3]. Here qG < 1 case has not
been considered since qG ↔ 1/qG.

6 Conclusions

In the first part of this study, Landau diamagnetism
has been generalized within TT by introducing CS for
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the first time (as far as we know) in the frame of this for-
malism. From the generalized magnetization, the effect of
nonextensivity has clearly been illustrated, similar to what
appeared in some recent works on different systems [18,
19,22]. Although q is equal to unity for the conventional
Landau diamagnetism, it might be useful to consider the
q 6= 1 case whenever the system is thought to evolve in a
fractal-like space-time. In addition to this, the effect of a
perturbation term on diamagnetic susceptibility has been
obtained by adding a harmonic potential to the Hamil-
tonian. It is worthwhile to emphasize that for ω0 � ω,
no contribution comes from the harmonic perturbation
term to the diamagnetic susceptibility in the q → 1 limit,
whereas in the q 6= 1 case, there is a contribution in the
order of (2ω0)

q−1
, which is a consequence of the nonex-

tensive effects.
Since the interest on nonextensive physical systems is

progressing along two main lines namely TT and QG, in
the last part of this paper, with the help of the partition
function of qG-deformed oscillator, the qG-deformed Lan-
dau diamagnetism has been investigated. It is seen from
the magnetization curves that the effect of nonextensivity
is similar to that obtained from TT, moreover, it is evi-
dent that the behaviour of the curves completely agrees
with the remarks of Tsallis [3], a rather pleasant result.

Summing up, in the recent years, some physical
systems such as harmonic oscillators [5,32], symmet-
ric top [33,34], blackbody radiation [18,19,35] and dark
magnetism problem [36,37] have been handled in the
frame of TT and QG; and in this paper, we contribute
to this field by investigating the Landau diamagnetism
within these two formalisms.

The authors are indebted to Ayşe Erzan for valuable comments
and discussions. SFÖ and UT would like to thank Ege Univer-
sity Research Fund for their partial support under the Project
Numbers 96 FEN 013 and 97 FEN 025, respectively.
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Phys. Pol. A91, 1035 (1997).

7. A.M. Mariz, Phys. Lett. A165, 409 (1992); J.D. Ramshaw,
Phys. Lett. A175, 169 and 171 (1993).
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